Fundação Oswaldo Cruz - FIOCRUZ

Instituto Oswaldo Cruz - IOC

CURSO DE INVERNO 2018

BACTÉRIAS ENVOLVIDAS EM INFECÇÕES HOSPITALARES: IDENTIFICAÇÃO, TIPAGEM MOLECULAR E CARACTERIZAÇÃO DOS MECANISMOS DE RESISTÊNCIA.

Alunos docentes:

Anna Erika Vieira de Araújo (Doutoranda – BCM) – <u>anna.vieira@bio.fiocruz.br</u>
Fernando Medeiros (Doutorando – BCS) – <u>medeiros.fiocruz@gmail.com</u>
Ivson Cassiano de Oliveira Santos (Doutorando – BCM) – <u>ivson.santos@ioc.fiocruz.br</u>
Melise Chaves Silveira (Doutoranda – BCS) – <u>melisecs@ioc.fiocruz.br</u>
Orlando Carlos da Conceição Neto (Doutorando – BCM) – <u>orlando.neto@ioc.fiocruz.br</u>

Coordenadores:

Dra. Ana Paula D'Alincourt Carvalho-Assef (Docente - BCM) — anapdca@ioc.fiocruz.br
Dr. Cláudio Marcos Rocha de Souza - claudio.rocha@ioc.fiocruz.br
Laboratório de Pesquisa em Infecção Hospitalar - LAPIH — IOC/Fiocruz.

PÚBLICO-ALVO: Alunos de graduação das áreas de Ciências Biológicas e da Saúde.

OBJETIVOS DO CURSO:

O curso, em caráter introdutório, pretende abordar a problemática da infecção hospitalar e a resistência bacteriana. Serão apresentados os conceitos básicos sobre a epidemiologia das infecções bacterianas relacionadas à assistência à saúde, identificação fenotípica, mecanismos de resistência e tipagem molecular.

Abordará as principais técnicas utilizadas para a detecção dos genes de resistência (PCR) e para a genotipagem de microrganismos (derivações da PCR e PFGE). O curso será desenvolvido a partir de aulas teóricas, discussão em pequenos grupos, seminários, estudos dirigidos e atividades práticas laboratoriais.

EMENTA:

Apresentação dos principais grupos bacterianos (Cocos Gram-positivos, Bastonetes Gram-negativos (BGN) e BGN-não fermentadores). Antimicrobianos, mecanismos bacterianos de resistência e novas abordagens antimicrobianas. Técnicas para identificação bacteriana de cocos Gram-positivos e bastonetes Gram-negativos e para detecção de genes de resistências: métodos fenotípicos e moleculares. Elementos genéticos móveis associados à resistência e metodologias de tipagem molecular baseadas em padrões de bandas e sequenciamento. Introdução à modelagem matemática e computacional. Bancos de dados e ferramentas online para identificação de genes de resistência. Aulas práticas sobre identificação bacteriana e antibiograma, extração de DNA e reação em cadeia da polimerase (PCR), eletroforese em gel de agarose e eletroforese em gel de campo pulsado (PFGE).

PERÍODO: 16 a 20/07/2018

CARGA HORÁRIA: 40h

PRÉ-REQUISITO: Alunos que já tenham concluído com aproveitamento a disciplina de

Microbiologia no curso de graduação.

CRITÉRIO DE SELEÇÃO: Carta de interesse explicitando que cursou a disciplina de

Microbiologia no Curso de graduação

NÚMERO DE VAGAS: 16 (curso teórico-prático)

AVALIAÇÃO: Jogo didático (avaliação de situação-problema)

NECESSIDADES ESPECÍFICAS: Laboratório para aulas práticas

CRONOGRAMA:

DATA	HORÁRIO	AULA/ATIVIDADE	PROFESSOR
SEG 16/07	9h – 10:30h	Apresentação Geral do Curso de Inverno	Coordenação
		IOC – 2018	Curso de
			Inverno do
			IOC
	10:45h – 12h	Biossegurança e Boas Práticas em	Ivson Santos
		Laboratórios de Microbiologia / Noções	
		básicas de bacteriologia / IRAS	
	13h-15:15h	Antimicrobianos e mecanismos bacterianos	Orlando Neto
		de resistência.	
	15:30h – 17h	Elementos genéticos móveis associados à	Orlando Neto
		resistência.	
TER 17/07	9h – 10:30h	Principais grupos bacterianos associados a	Anna Erika
		IRAS: Cocos Gram-positivos	
	10:45h – 12h	Principais grupos bacterianos associados a	Melise Chaves
		IRAS: Bastonetes Gram- negativos	
	13h – 17h	Prática 1: Identificação e antibiograma.	Todos
QUA 18/07	9h – 10:30h	Detecção de genes de resistências: métodos	Ivson Santos
		fenotípicos e moleculares.	Melise Chaves
	10:45h – 12h	Bancos de dados e ferramentas online para	Melise Chaves
		identificação de genes de resistência.	
	13h – 17h	Prática 2: Interpretação do antibiograma.	Todos
		Prática 3: Extração de DNA e PCR.	
QUI 19/07 SEX 20/07	9h – 10:30h	Metodologias de tipagem molecular	Orlando Neto
		baseadas em padrões de bandas e	Ivson Santos
	10.451101	sequenciamento.	
	10:45h – 12h	Novas terapias antimicrobianas.	Anna Erika
	13h – 17h	Prática 4: Eletroforese em gel de agarose.	Todos
	9h – 10h30min	Introdução à modelagem matemática e	Fernando
		computacional para busca de novos alvos	Medeiros
	10h30h – 12h	Prática 5: Eletroforese em gel de campo	Todos
	126 175	pulsado (PFGE).	Todoo
	13h – 17h	Avaliação e encerramento	Todos